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Distribution compression seeks to replace large datasets with smaller representative sets
that preserve their key statistical properties, reducing the financial, environmental, and
time costs of storage and computation. 
Existing methods have been developed for unlabelled data, targeting the distribution
[1, 2, 3]. However, many real-world datasets are labelled, where preserving relationships
between inputs and outputs is essential. 
Depending on the downstream task, one may wish to preserve the joint distribution            ,
which captures dependencies between features and labels, or the conditional distribution
_          which governs predictive behaviour. 
Extending distribution compression techniques beyond the marginal case naturally begins
with the joint distribution, but directly targeting the conditional distribution is considerably
more challenging, requiring new ways to compare and compress conditional structure.

Extending herding [1] and gradient flow [2] methods, we propose Joint Kernel Herding (JKH)
and Joint Kernel Inducing Points (JKIP), which produce compressed sets targeting the joint
distribution. 
Extending the distributional metric, Maximum Mean Discrepancy (MMD) [4], we then
introduce the Average Maximum Conditional Mean Discrepancy (AMCMD) which we show is
a metric on the space of conditional distributions, and derive a closed-form estimate. 
We make a crucial observation that in the context of conditional distribution compression,
estimation of the AMCMD can be accelerated from              to           .
This observation enables us to develop Average Conditional Kernel Herding (ACKH) and
Average Conditional Kernel Inducing Points (ACKIP), which compress the conditional
distribution in linear time.
Across various datasets and evaluation metrics, we show that directly compressing the
conditional distribution is preferable to joint distribution compression. Moreover, the
greedy herding methods (JKH, ACKH) are outperformed by gradient flow methods (JKIP,
ACKIP).

   

   

Distribution compression algorithms optimise the compressed set                           to
minimise the MMD to the empirical distribution         of the target dataset                          :

where                , and we denote        as the kernel mean embedding of the distribution        .
The KME         lies in the Reproducing Kernel Hilbert Space (RKHS)         induced by the
positive definite kernel                                 , which is defined on the feature space     .  

Given an additional kernel                                defined on the response space      we can
induce a Tensor-product RKHS            . We can then extend existing distribution
compression algorithms to optimise a compressed set                                      which minimises
the Joint MMD [5] to the empirical distribution of the target dataset                                     :

where           is a weighting distribution, and                                 is the kernel conditional mean
embedding (KCME). The KCME is a vector-valued function, which takes as inputs
conditioning values              , and outputs KMEs                 lying in       .   

   

Suppose the response kernel           is characteristic, that          ,          , and          are
absolutely continuous with respect to eachother, and that                  and                  admit
regular versions. Then,                                                               if and only if, for almost all
wrt         ,                                          for all              .  Moreover, assuming the Radon-Nikodym
derivatives         ,        , and         are bounded, then the triangle inequality is satisfied, i.e.      

Figure 2: Pairs sampled from           (red) exhibit the same relationship as pairs from              (blue), where the density of the weighting
distribution          is concentrated. Away from this region the relationships diverge, and          has little mass in these regions.

We can now optimise a compressed set                                      which minimises the AMCMD
to the empirical conditional distribution of the target dataset                                     :

We can obtain a closed-form representation of this, however it has               cost. For
distribution compression, it is natural to choose                       , then by applying the tower
property, we can reduce to            cost, enabling linear-time conditional distribution
compression algorithms.
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Random ACKIP

Figure 1: Compressed set of size 25 generated by ACKIP (green), initialised with uniformly at random subsample (yellow).

In order to extend distribution compression to the conditional distribution, we first require
a notion of conditional disrepancy, for this we introduce the AMCMD:

Theorem  - The AMCMD is a proper metric
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The KCME has many important applications. In our work, we investigate how compression
effects various regression and classification tasks. Below, we show results on MNIST after
98% compression, reporting both the per-class calibration and overall accuracy.

Figure 3: Results on MNIST data for compressed sets of size                  ; the RMSE is calculated against estimates of
using the full data, as true values are not availble.  

ACKH and ACKIP enable efficient estimation and evaluation of the KCME while maintaining
a close approximation to the true KCME in terms of the AMCMD. 

The KCME is widely used across various applications despite its original cubic cost. By
reducing this to linear, whilst impacting empirical performance minimally, ACKIP
significantly expand the range of scenarios where the KCME can be practically applied.


