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. Distribution compression seeks to replace large datasets with smaller representative sets
that preserve their key statistical properties, reducing the financial, environmental, and
time costs of storage and computation.

. Existing methods have been developed for unlabelled data, targeting the distribution [P x
[1, 2, 3]. However, many real-world datasets are labelled, where preserving relationships
between inputs and outputs is essential.

. Depending on the downstream task, one may wish to preserve the joint distribution [P XY
which captures dependencies between features and labels, or the conditional distribution
Py| X which governs predictive behaviour.

- Extending distribution compression techniques beyond the marginal case naturally begins
with the joint distribution, but directly targeting the conditional distribution is considerably
more challenging, requiring new ways to compare and compress conditional structure.

Contributions

- Extending herding [1] and gradient flow [2] methods, we propose Joint Kernel Herding (JKH)
and Joint Kernel Inducing Points (JKIP), which produce compressed sets targeting the joint
distribution.

- Extending the distributional metric, Maximum Mean Discrepancy (MMD) [4], we then
introduce the Average Maximum Conditional Mean Discrepancy (AMCNMD) which we show 1s

a metric on the space of conditional distributions, and derive a closed-form estimate.

- We make a crucial observation that in the context of conditional distribution compression,
estimation of the AMCMD can be accelerated from O(n?) to O(n).

- This observation enables us to develop Average Conditional Kernel Herding (ACKH) and
Average Conditional Kernel Inducing Points (ACKIP), which compress the conditional

distribution in linear time.

- Across various datasets and evaluation metrics, we show that directly compressing the
conditional distribution is preferable to joint distribution compression. Moreover, the
greedy herding methods (JKH, ACKH) are outperformed by gradient flow methods (JKIP,
ACKIP).

é ACKIP

Figure 1: Compressed set of size 25 generated by ACKIP (green), initialised with uniformly at random subsample (yellow).
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Joint and Conditional MMDs

- Distribution compression algorithms optimise the compressed set C = {Zi ;;11 to
minimise the MMD to the empirical distribution P x of the target dataset D = {x;}_;:

MMD2(Px,P,) := |liix — fizl%,

n n,m m
Y k(i x) —2) k(i z)+ Y k(zi,2)),
1,7=1 1,7=1 1,7=1
where m < n ,and we denote i x as the kernel mean embedding of the distribution [P x.
The KME W x lies in the Reproducing Kernel Hilbert Space (RKHS) H ;. induced by the

positive definite kernel k£ : X x X — R, which is defined on the feature space X.

. Given an additional kernel [ : )) X ) — R defined on the response space ) we can
induce a Tensor-product RKHS ‘H ;. We can then extend existing distribution
compression algorithms to optimise a compressed set C = {(2;, w;)}.~,; which minimises

the Joint MMD [5] to the empirical distribution of the target dataset D = {(x;, y;) }'—;:

JMMDZ(I@)X,Y,I@)Z,W) ‘= H:aX,Y _ ﬂZ,WH?‘M@l

— i k(;pz, wj)l(yia yj) — 2 ,Z k(iBz, zj)l(yz-,'wj) i k(zi, zj)l(wi,wj).

1,J=1 1,J=1 1,J=1

« In order to extend distribution compression to the conditional distribution, we first require
a notion of conditional disrepancy, for this we introduce the AMCMD:

AMCMD (PX*apY\XapY’\X’) — \/ﬂagNIP’X* [HMY\X::B — I’I’Y"X’::BH’?{Z}

where [P x+ is a weighting distribution, and Hy|X : X — H; is the kernel conditional mean
embedding (KCME). The KCME is a vector-valued function, which takes as inputs
conditioning values & € X, and outputs KMEs pty|x—, lyingin H,;.

Theorem - The AMCMD is a proper metric

Suppose the response kernel [(-, -) is characteristic, that Px , Px/, and [P x« are
absolutely continuous with respect to eachother, and that P(- | X) and P(- | X’) admit
regular versions. Then, AMCMD (IP’ x+ Py x, Py X/) = 0 if and only if, for almostall ® € X
wrt Px. , Pyix—s(A) = Py x/(A) forall A € &. Moreover, assuming the Radon-Nikodym

derivatives dPx- | dPx- ' and ‘(111@?;* are bounded, then the triangle inequality is satisfied, i.e.

AMCMD (IP)Y‘Xa IP)Y”|X”) S AMCMD (PY|X7 IP)Y"X’) —+ AMCMD (IP)Y’|X’7 ]P)Y"|X”) .
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Figure 2: Pairs sampled from P x y (red) exhibit the same relationship as pairs from Py (blue), where the density of the weighting
distribution [P x«is concentrated. Away from this region the relationships diverge, and [P x+ has little mass in these regions.
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. We can now optimise a compressed set C = {(zi, ’wi) -~ 1 which minimises the AMCMD

to the empirical conditional distribution of the target dataset D = {(x;, ¥;)} .-

A A . 1 < 2
2 A A
AMCMD (PX*, Py x, PZ|W) = E N By x=2; — Bzw=at |4, -
=1
We can obtain a closed-form representation of this, however it has (’)(ng) cost. For
distribution compression, it is natural to choose [P x+ = [P x, then by applying the tower
property, we can reduce to (J(n) cost, enabling linear-time conditional distribution

compression algorithms.

- The KCME has many important applications. In our work, we investigate how compression
effects various regression and classification tasks. Below, we show results on MNIST after
98% compression, reporting both the per-class calibration and overall accuracy.
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Figure 3: Results on MNIST data for compressed sets of size m = 250; the RMSE is calculated against estimates of E[h(Y) | X = x;]
using the full data, as true values are not availble.

Discussion

- ACKH and ACKIP enable efficient estimation and evaluation of the KCME while maintaining
a close approximation to the true KCME in terms of the AMCMD.

- The KCME is widely used across various applications despite its original cubic cost. By
reducing this to linear, whilst impacting empirical performance minimally, ACKIP
significantly expand the range of scenarios where the KCME can be practically applied.

References

[1] - Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. UAI 2010

[2] - Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient flow, NeurIPS 2019

[3] - Raaz Dwivedi and Lester Mackey. Kernel thinning. COLT 2021

[4] - Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Scholkopf, and Alexander Smola. A kernel two-sample test, JMLR
2012

[5] - Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Deep transfer learning with joint adaptation networks, ICML
2017

dominic.broadbent@bristol.ac.uk



