i 01 0 () 11 1001V VY 01 01 0 () \ () LR 01 () () 111 1

velq]jihgz Cqmputero Aigb
ﬁ-.—ea-ﬂé_r,-,_e-mé—r

o \\\
\OO\ Q\\

svstér%r‘\o

0011
01 \\0 O 0010

HOO”
H 01 0 01

\\\OO\\
011010

1100 119
m\O\ : lchB ba&en@g?\%\ 000100
111

i SI yofi 0

ingham

00

110
1
x\OO\OXO\\?\woo\OO\\\

10

\ \ () 1 () ()

What is a Computer Algebra System?

A computer algebra system (CAS) is a piece of software that
mimics the paper and pencil symbolic manipulation of
mathematical expressions. This distinguishes them from traditional
calculators that deal with equations numerically. In general, the
chief objective of a CAS is to replace the need for hand
computation of arduous or tedious algebraic tasks.

The very first CAS, named ‘Schoonschip’ after the Dutch expression
“schoon schip maken”; literally “to make the ship clean”
" was developed in 1963 by Nobel laureate Martinus
J.G. Veltman. By 1987 CAS had made their way to
hand-held calculators and in the present day there are
many general-purpose systems both free and
commercially available; perhaps the most widely
recognised being Wolfram Mathematica.

V1TV | UV

.~nn11 1) . 010101V TV =

The Shunting-Yard Algorithm

We write mathematics in infix notation; named as such because
operators are found inside the operands. This notation requires
parentheses in order to deviate from the standard order of
operations. This notation is very difficult to interpret in a CAS and
so we convert to postfix notation; named as such because
operators are found after the operands. Postfix notation doesn’t
require parentheses as the order of operation is obvious from the
order of the expression. An example is as follows:

“12%(4+2) =12 4 2 + *

This form is ideal for CAStle as the answer can be computed only
working from left to right. The Shunting-Yard algorithm
accomplishes this conversion via two data structures; the stack and
the queue. These structures hold and release items in specific
orders. The queue is First-In-First-Out (FIFO) while the stack is
Last-In-First-Out (LIFO). Applying the algorithm to the above
example works as follows:

(4+2)

(/

Output Queve <— 12 * (4 +2) 12

4

Operator Stack

~— *(4+2) 12

Y

4+2) +2)

Y

1242 +*

Y

Y

Development of CAStIe

Our compter algebra system, called
CAStle, was built in the programming
language Python. The development
process began with a focus on

numerical computation. This was in
anticipation of calculating composite coefficients of
variables. Various algorithms have
been implented such as Edsger
Dijkstra’s Shunting-Yard Algorithm,
named as such due to its operation
resembling a rail-road shunting-
yard. Via these algorithms the
system is capable of evaluating
numerical expressions, with many available functions.

With computation functionality fully implemented we
moved onto the main goal; simplifying compound

~linear expressions in multiple variables. A compound
linear expression is equivalent to a linear expression
where the ‘variables’ can represent simple non-linear
expressions with no operations or coefficients. An
example is as follows:

“12z’xy*+ 4xyz - 7xyxy”

Many hurdles had to be overcome to accomplish this.
Firstly we had to develop a parser capable of
processing the user input into a standard form.

Then we devised algorithms with the capacity to
simplify variables and collect alike terms. Most of
these algorithms were then adapted to provide
contextual step-by-step instructions upon the users

request. Below is an example of CAStle’s output.

11(\@.\ \Ul‘ UU\

.. 11001 P |
Enter your expression:
(4*fac(3)) + (12/3/2)x"2 + 2xyxy + 2x"3yyx*-1
The variable xyxy is equal to: x*2y”2
The variable x"3yyx"-1 is equal to: x*2y”2
The expression has been simplified to: (4*fac(3)) + (12/3/2)x"2 + 2x"2y"2 + 2x"2y"2
The constant term (4*fac(3)) has been interpreted as: (4*fac(3))
fac(3) = 6

Updated expression:
4%6 = 24

(4%6)

The expression has been simplified to: 24 + (12/3/2)x"2 + 2x"2y"2 + 2x"2y"2

The coefficient of (12/3/2)x*2 has been interpreted as: ((12/3)/2)
12/3 = 4.0

Updated expression: (4.0/2)

4.0/2 = 2.0

The expression has been simplified to: 24 + 2x"2 + 2x"2y"2 + 2x"2y"2
XA2y~2 term: 2xA2yA2 + 2xA2yA2 = 4xA2yM2

CAStle has simplified your expression to:
24 + 2X"2 + 4x"2yM2

0

