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Introduction Two-Stage Optimisation

- Training Al models often now requires enormous datasets, computation, and
energy, with serious financial and environmental costs. A key challenge is

Stage 1: Optimise Autoencoder

thus how to reduce data without losing the essential information it carries.

- Existing distribution compression methods focus exclusively on reducing the
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number of observations, while preserving the essential statistical properties
of the original data. However, this overlooks the fact that modern datasets are
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often large both in sample size and in dimensionality
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- To address this gap, we propose Bilateral Distribution Compression (BDC),
highlighting that compression acts simultaneously on both the number of * latent
samples and their dimensionality, i.e. bilaterall e P HECOmSITLaIen
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Maximum Mean Discrepancy

. Given a dataset D := {z;}" , ¢ R¢ with n,d > 1 sampled i.i.d.froma
distribution [P x we construct a compresed set C := {z;}7; C R? with
m < n and p < d that preserves the distribution of the original data.

- To measure distributional fidelity, we use the Maximum Mean Discrepancy
(MMD). Given an additional distribution [Py the MMD is given as

MMD?(Px, Py) = E[k(z, z')] — 2E[k(z,y)] + E[k(y, v')]

where z,z' ~ Px , y,y' ~ Py and k(-, ) is a user-specified kernel function | \ I compressed
which determines which aspects of the two distributions are compared. It can ambient

set
be shown that for certain kernels, the MMD is zero if and only if P v = Py-. . A A
= ; e A £ C. = arg min EMMD? (P (x): P2)
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. As a notion of discrepancy between the empirical distribution IP x in ambient
space Rd, and the empirical distribution of the compressed set [P 7 in latent
space R? we propose the Decoded MMD (DMMD):

n n,m m
DMMD?(Bx, Byz) = 3 ke @) 2 k(@i d(z) + Y k(d(z0), 6(z)) Downstream Tasks
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where ¢ : R¥ — R® is a decoder that maps points back into ambient space. - BDC can be used to construct both labelled and unlabelled compressed sets,

opening up acceleration of a variety of important supervised and

. . . . . unsupervised downstream tasks such as (but not limited to) regression,
Bilateral Distribution Compr ession classification and clustering. We now present a clustering problem.

- W truct thetic dataset of n = 100,000 two-di 1onal point
- The DMMD is a natural target, however joint optimisation over both the < COnS r.uc a synthetic aa ase_ o m ) WO .1r.nens1ona p01r} y
: : : : arranged in 10 clusters of varying shapes, with an additional 2,000 points of
decoder and the compressed set is challenging. Their roles are tightly

1f iIse. The dat -1i 1 jected t = di . :
coupled within the DMMD, leading to a highly non-convex and entangled uniform noise. The data are non-linearly projected tod = 500 dimensions

optimisation landscape. . Using BDC we then compress back to p = 2 dimensions with m = 300

« The key idea of BDC is thus to break a hard problem into two easier stages: points, achieving 99.9997% compression, taking just over a minute.

Stage 1: Train an encoder ¥ : R% 5 RP and decoder ¢:RP — R4 by - Using the clustering method HDBSCAN, we are then able to cluster held out
minimising the MIMD between the original data D and its test points with accuracy comparable to the full dataset, and standard (non-
reconstruction ¢(¢(D)) . denoted as Reconstruction MIMD. bilateral) distribution compression methods, at a fraction of the cost.

Stage 2: With qb, ¢ fixed, optimise a compressed set by minimising the
MMD between D projected into latent space, i.e. ¢(D), and

the compresseed set C C RP, denoted as Encoded MMD.

Original Intrinisic Data BDC

« The RMMD checks if an autoencoder’s reconstructions preserve the
distribution of the data and the EMIMD checks if the compressed latent set
represents the encoded data well in latent space.

Theorem 1

Under mild conditions on the choice of kernel functions, suppose that Px
and [Pz are such that RMMD (Px, Pyyx))) = 0 and EMMD (Pyx)),Pz) =0

then we have that DMMD (Px, Pyz)) = 0.

« Theorem 1 states that if both RIMIMD and EIVIMD vanish, then the DIMIMD is
also exactly zero, motivating the two-stage process. Thus, the distribution is

Figure 1l: Original intrinsic data before projection, next to a compressed set constructed

preserved despite the reduction in both sample size and dimensionality. by BDC (red).The encoder recovers the intrinsic space and the compressed set clearly

delineates the clusters, ignoring noise.
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