
Introduction

Maximum Mean Discrepancy

Given a dataset                                    with                   sampled i.i.d. from a
distribution         we construct a compresed set                                    with                                        

                     and               that preserves the distribution of the original data.

To measure distributional fidelity, we use the Maximum Mean Discrepancy
(MMD). Given an additional distribution         the MMD is given as

where                     ,                     and             is a user-specified kernel function
which determines which aspects of the two distributions are compared. It can
be shown that for certain kernels, the MMD is zero if and only if                     . 

As a notion of discrepancy between the empirical distribution        in ambient
space      , and the empirical distribution of the compressed set        in latent
space       we propose the Decoded MMD (DMMD):

where                        is a decoder that maps points back into ambient space.

Bilateral Distribution Compression

The key idea of BDC is thus to break a hard problem into two easier stages: 

Stage 1: Train an encoder                            and decoder                            by            
minimising the MMD between the original data       and its
reconstruction                    , denoted as Reconstruction MMD. 

Stage 2: With           fixed, optimise a compressed set by minimising the 
MMD between      projected into latent space, i.e.            , and
the compresseed set                , denoted as Encoded MMD.                    
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Original Intrinisic Data

Training AI models often now requires enormous datasets, computation, and
energy, with serious financial and environmental costs. A key challenge is
thus how to reduce data without losing the essential information it carries.

Existing distribution compression methods focus exclusively on reducing the
number of observations, while preserving the essential statistical properties
of the original data. However, this overlooks the fact that modern datasets are
often large both in sample size and in dimensionality

To address this gap, we propose Bilateral Distribution Compression (BDC),
highlighting that compression acts simultaneously on both the number of
samples and their dimensionality, i.e. bilaterally.

The DMMD is a natural target, however joint optimisation over both the
decoder and the compressed set is challenging. Their roles are tightly
coupled within the DMMD, leading to a highly non-convex and entangled
optimisation landscape.

The RMMD checks if an autoencoder’s reconstructions preserve the
distribution of the data and the EMMD checks if the compressed latent set
represents the encoded data well in latent space.

Theorem 1
Under mild conditions on the choice of kernel functions, suppose that
and         are such that                                                and
then we have that                                          .  

Theorem 1 states that if both RMMD and EMMD vanish, then the DMMD is
also exactly zero, motivating the two-stage process. Thus, the distribution is
preserved despite the reduction in both sample size and dimensionality.

Two-Stage Optimisation

Downstream Tasks

BDC

Figure 1: Original intrinsic data before projection, next to a compressed set constructed
by BDC (red). The encoder recovers the intrinsic space and the compressed set clearly
delineates the clusters, ignoring noise.

We construct a synthetic dataset of                          two-dimensional points
arranged in       clusters of varying shapes, with an additional            points of
uniform noise. The data are non-linearly projected to                 dimensions.  

Using BDC we then compress back to             dimensions with
points, achieving                  compression, taking just over a minute. 

Using the clustering method HDBSCAN, we are then able to cluster held out
test points with accuracy comparable to the full dataset, and standard (non-
bilateral) distribution compression methods, at a fraction of the cost.

BDC can be used to construct both labelled and unlabelled compressed sets,
opening up acceleration of a variety of important supervised and
unsupervised downstream tasks such as (but not limited to) regression,
classification and clustering. We now present a clustering problem. 


